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VARUN: Discovering Extensible Motifs under
Saturation Constraints

Alberto Apostolico, Matteo Comin, and Laxmi Parida

Abstract—
The discovery of motifs in biosequences is frequently torn

between the rigidity of the model on the one hand and the
abundance of candidates on the other. In particular, motifs that
include wildcards or “dont cares” escalate exponentially with
their number, and this gets only worse if a dont care is allowed
to stretch up to some prescribed maximum length. In this paper,
a notion of extensible motif in a sequence is introduced and
studied, which tightly combines the structure of the motif pattern,
as described by its syntactic specification, with the statistical
measure of its occurrence count. It is shown that a combination
of appropriate saturation conditions and the monotonicity of
probabilistic scores over regions of constant frequency afford us
significant parsimony in the generation and testing of candidate
overrepresented motifs.

A suite of software programs called Varun1 is described,
implementing the discovery of extensible motifs of the type
considered. The merits of the method are then documented by
results obtained in a variety of experiments primarily targeting
protein sequence families. Of equal importance seems the fact
that the sets of all surprising motifs returned in each experiment
are extracted faster and come in much more manageable sizes
than would be obtained in the absence of saturation constraints.

Index Terms— Computational genomics, pattern discovery,
data mining, motif, protein sequence, protein family.

I. INTRODUCTION

THE discovery of motifs in bio-sequences is attracting in-

creasing interest due to the perceived multiple implication

of motifs in biological structure and function. The approaches to

motif discovery may be partitioned in two main classes. In the

first class, the sample string is tested for occurrences of motifs

in a family of a priori defined, abstract models or templates. The

second class of approaches assumes that the search may be limited

to substrings in the sample or to some more or less controlled

neighborhood of those substrings. The approaches in the first

class are more rigorously justifiable, but often pose daunting

computational burdens. Those in the second class tend to be

computationally viable but rest on more shaky methodological

grounds.

The characterizations offered for the notion of a motif could

be partitioned roughly into statistical and syntactic. In a typical

statistical characterization, a motif is a sequence of m positions

such that at each position each character from (some subset of)

the alphabet may occur with a given probability or weight. This
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1Varun, along with experiments and input files used in this paper, is
available for use at:
www.research.ibm.com/computationalgenomics.
A preliminary version of this paper has been presented at ISMB 2005 [3].

is often described by a suitable matrix or profile, where columns

correspond to positions and rows to alphabet characters (see, e.g.,

[11], [13]). The lineage of syntactic characterizations could be

ascribed to the theory of error correcting codes: a motif is a

pattern w of length m and an occurrence of it is any string at a

distance of d, the distance being measured in terms of errors of a

certain type. E.g., we can have only substitutions in the Hamming
variant, substitutions and indels in the Levensthein variant, and so

on (see, e.g., [12], [16]). Syntactic characterizations enable us to

describe the model of a motif, or a realization of it, or both, as a

string or simple regular expression over an extension of the input

alphabet Σ, e.g., over Σ∪{.}, where “.” denotes the “don’t care”

character.

Irrespective of the particular model or representation chosen,

the tenet of motif discovery equates over-representation of a motif

with surprise and hence with interest. Thus, any motif discovery

algorithm must ultimately weigh motifs against some threshold,

based on a score that compares empirical and expected frequency,

perhaps with some normalization. The departure of a pattern w

from expectation is commonly measured by so-called z-scores

(see, e.g., [14]), which have the form

z(w) =
f(w) − E(w)

N(w)

where f(w) > 0 represents a frequency, E(w) > 0 an expectation

and N(w) > 0 is the expected value of some function of w.

For given z-score function, set of patterns W , and real positive

threshold T , patterns such that z(w) > T or z(w) < −T

are respectively dubbed over- or under-represented, or simply

surprising. The problem is that the number of patterns extracted

in this way may escalate quite rapidly, a circumstance that seems

to preclude precisely those massive analyses that have become

conceivable with the increasing availability of whole genomes.

Large-scale statistical tables may not only impose unbearable

computational burden. They are also impractical to visualize and

use, a circumstance that may defy the purpose of building them

in the first place. A little reflection establishes how exponential

build-up may take place. Assume that on the binary alphabet

both aabaab and abbabb are asserted as reflections of candidate

interesting motifs. We can give a concise description of one such

motif by writing a.ba.b, with “.” denoting the don’t care, and

then look for further occurrences of it. By this, however, we

have immediately annexed also the spurious patterns aababb and

abbaab. A similar problem presents itself in the approaches that

resort to profiles or weighed matrices mentioned earlier. In all

of these cases, the risk is having to tell Horatio that there are

more things in his philosophy than are dreamed of in heaven and

earth2. Even setting aside computational aspects, tables that are

too large at the outset risk to saturate the visual bandwidth of

2“There are more things in heaven and earth, Horatio, Than art dreamt of
in your philosophy”- W. Shakespeare, Hamlet, I, v [76].
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the user. In this spirit, approaches that limit from the start the

number of patterns to be considered may reap a more significant

throughput, even in the comparison with exhaustive methods.

We regard the motif discovery process as distributed on two

stages, where the first stage unearths motifs endowed with a

certain set of properties and the second filters out the interesting

ones. Since the redundancy builds up in the first stage, it is

there that we have to look for possible ways of reducing the

unnecessary throughput. Since over-representation is measured

by a score, one would have to find ways to neglect candidate

motifs that cannot possibly make it to the top list, and ideally

spot such motifs before they are even computed. Counterintuitive

as it might look, we show that such a possibility may be offered

by certain attributes of “saturation” that combine in a unique way

the syntactic structure and the list of occurrences or frequency for

a motif. With solid words (i.e. a string of solid characters), for

example, we know that in the worst case the number of distinct

substrings in a string can be quadratic in the length of that string.

Yet, if we partition the substrings into buckets by putting in the

same bucket strings that have exactly the same set of occurrences,

then we only need a number of buckets linear in the textstring

[7]. Similar linear bounds were established for special classes of

rigid motifs containing “don’t cares” [4]. When combined with

intervals of score monotonicity, properties of this kind support

the global detection of unusual words of any length in overall

linear space [2]. Some of these conservative scoring techniques

were extended recently to rigid motifs with a prescribed maximum

number of mismatches or don’t care [5].

In this paper, we introduce and study a characterization of

extensible motifs in the definition of which structural or syntactic

properties and occurrence statistics are solidly intertwined. We

show that a prudent combination of saturation conditions (ex-

pressed in terms of minimum number of don’t cares compatible

with a given list of occurrences) and monotonicity of scores

afford us significant parsimony in the generation and testing of

candidate over-represented motifs. More specifically, we isolate

as candidate surprising motifs only the members of an a priori
well identified set of “maximal” or “saturated” patterns. By this

set being identifiable a priori we mean that the motifs in the set

can be known before any score is computed. By neglecting the

motifs other than those in our set we would not be overlooking

any surprising motif. In fact, we maintain that any such motif:

(i) is embedded in one of the saturated ones, and (ii) does not

achieve a larger score than the latter (hence, computing its score

and publishing it explicitly would take more time and space but

not add information). The results of this paper apply to extensible
patterns a philosophy previously applied to rigid motifs described

(1) by solid words [2] and (2) by words of some specified fixed

length affected by a specified maximum number of errors [5]. The

transition from rigid to extensible motifs requires the orchestration

of substantially novel concepts and tools, resulting in an algorithm

for the extraction and weighing of extensible motifs, and a suite

of software programs implementing the whole. The merits of

the method are tested on families of protein sequences, as is

documented in the last part of the paper. In all cases tested,

the motif reported in PROSITE as most important in terms of

functional/structural relevance emerges either at the top or among

the top ten or so of the (short) output list. Experiments related to

the sensitivity and selectivity of the method are also reported.

Many pieces of software exist in literature to carry out the task

of motif or pattern discovery on string data. As already mentioned

in part, the guiding principles underlying these discovery tools

have been categorized in different ways: supervised vs unsu-

pervised, aligned vs unaligned, enumerative vs non-enumerative,

combinatorial vs statistical (or learning) methods. Yet another

cataloguing is based on the motif architecture: solid patterns,

patterns with fixed size gaps, patterns with variable sized gaps,

patterns with specific gapped structures. See [15] for further

elaboration along these lines and for citations.

The method presented here is unsupervised, unaligned, enu-

merative and (strictly speaking) a combinatorial approach during

the discovery phase. The spirit of the approach is along the lines

of the a priori scheme in [1] that was adopted in the software

tool presented in [17]. The present algorithm overcomes one of

the weaknesses present in the latter in terms of fixed gap sizes for

the pattern. The transfer of the a priori scheme to an algorithm

to tackle variable gap sizes in the architecture of a pattern is

non-obvious and this is one of the primary contributions of this

paper. Additional non-trivial expansions of the scheme reside in

the introduction of statistical measures and scoring functions the

monotonicity of which is exploited in order to reduce the search

space.

This paper is organized as follows. In the next section, we

stipulate some basic definitions and concepts and then proceed

to derive expressions for the probabilities and expected number

of occurrence of a motif under simple probabilistic models. We

further derive monotonicity properties that hold for related z-

scores under the fairly acceptable assumption that the probability

of a motif occurrence is less than 1/2. In Section 3 we discuss

our algorithm, its implementation and usage. Section IV, and

the annex entitled ”Supplemental Material” contain results from

rather extensive experiments on protein and, occasionally, DNA

sequences and sequence families. A brief section of conclusions

summarize our findings.

II. MOTIFS, EXPECTATIONS AND SCORES

Let m be a sequence of sets of characters from an alphabet

Σ∪{.}, where ‘.’ �∈ Σ denotes a don’t-care (dot, for short) and the

rest are solid characters. We use σ to denote a singleton character

or a subset of Σ. For character (sets) e1 and e2, we write e1 � e2

if and only if e1 is a don’t care or e1 ⊇ e2.

The input string s is a sequence of characters from the alphabet

Σ. Given an input string s and a positive integer k, k ≤ |s|, a

sequence m is a motif (extensible or rigid) of s with |m| > 1 and

location list Lm = (l1, l2, . . . , lp), if both m[1] and m[|m|] are

solid and Lm is the list of all and only the occurrences of m in

s. A motif m occurs at position l on s if m[j] � s[l+ j−1] holds

for 1 ≤ j ≤ |m|.
Allowing for spacers in a motif is what makes it extensible.

Such spacers are indicated by annotating the don’t care characters.

Specifically, an annotated “.” character is written as .α where α

is a set of positive integers {α1, α2, . . . , αk} or an interval α =

[αl, αu], representing all integers between αl and αu including αl

and αu. Whenever defined, d will denote the maximum number

of consecutive don’t cares allowed in a motif. In such cases, for

clarity of notation, we use the extensible wild card denoted by the

dash symbol “-” instead of the annotated dot character, .[1,d] in

the motif. Note that ‘-’ �∈ Σ. Thus a motif of the form a.[1,d]b will

be simply written as a-b. A motif m is extensible if it contains at

least one annotated dot, otherwise m is rigid. Given an extensible
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motif m, a rigid motif m′ is a realization of m if each annotated

dot .α is replaced by l ∈ α dots. The collection of all such rigid

realizations of m is denoted by R(m). For a rigid motif the set

of its realizations contains only one element, the motif itself.

An extensible motif m occurs at position l in s if there exists a

realization m′ of m that occurs at l. Note that an extensible motif

m could possibly occur a multiple number of times at a location

on a sequence s. Throughout in the discussion we are interested

mostly in the (unique) first left-most possible occurrence at each

location.

Given a motif m let m[j1], m[j2], . . . m[jl] be the l solid

elements in the motif m. Then the sub-motifs of m are given as

follows: for every ji, jt, the sub-motif m[ji . . . jt] is obtained by

dropping all the elements before (to the left of) ji and all elements

after (to the right of) jt in m. A motif m′ is a condensation of

m, if m′ can be produced by replacing some dots of m with

solid characters or by extending m with new solid characters,

eventually preceded by dots. This implies that m is a condensation
for any of its sub-motifs.

We are interested in motifs for which any condensation would

disrupt the cardinality of the list of occurrences. Formally, let m1,

m2, . . ., mh be the motifs in a string s. A motif mi is maximal
in length if there exists no ml, l �= i with |Lmi | = |Lml | and

mi is a sub-motif of ml. A motif mi is maximal in composition
if no dot character of mi can be replaced by a solid character

that appears in all the locations in Lm. If the motif mi contains

non-singleton characters then we require each sets of characters

to be the smallest set, among the ones defined a priori by the

user, that describes all occurrences of the motif. A motif mi is

maximal in extension if no annotated dot character of mi can

be replaced by a fixed length substring (without annotated dot

characters) that appears in all the locations in Lm. A motif that

is maximal in composition, in extension and in length will be said

to be maximal or saturated. Equivalently a motif m is saturated
or maximal if any condensation of m would change the number

of its occurrences.

We begin our treatment by deriving some simple expressions

for the probability pm of an extensible motif m under stationary,

iid assumptions. Let m be an extensible motif generated by a

stationary, iid source which emits σ ∈ Σ with probability pσ .

Consider the set R(m) of all possible realizations of m. Each

realization is a string over Σ ∪ {.}. For a specific realization m,

its probability pm is given by

pm =
∏
σ∈Σ

(pσ)jσ , (1)

where jσ is the number of times σ appears in m̄. Thus, the dot

has implicitly probability 1.

An extensible motif is degenerate if it can possibly have

multiple occurrences at a site i on the input s.

Lemma 1: Let m be an extensible non-degenerate motif gen-

erated by a stationary, iid source which emits (σ ∈ Σ) with

probability pσ . Let jσ be the number of times σ appears in m

and let e be the number of annotated dots in m with annotations

α1, α2, . . . αe. Then

pm =
∏
σ∈Σ

(pσ)jσ

e∏
i=1

|αi| . (2)

Proof. Since the motif is non-degenerate, by the definition of

realization of a motif,

pm =
∑

m∈R(m)

(pm) .

Hence we need to compute pm where m is a rigid motif. Assume

m is a rigid motif with no dot characters. By the iid assumption,

pm =
∏

σ∈Σ(pσ)jσ . Next, consider m to be a rigid motif with

possibly some dot characters. Again, clearly, pm =
∏

σ∈Σ(pσ)jσ .

In other words, only the solid characters contribute non-trivially

to the computation of pm. Hence, if m is not rigid,

pm = |R(m)|
∏
σ∈Σ

(pσ)jσ .

But |R(m)| =
∏e

i=1 |αi|, whence the claim. �
Corollary 1: If m is a non-degenerate extensible motif where

each m[i] is a set of (homologous) characters, then

pm =
∏

m[i] �=‘.′,‘-′

⎛
⎝ ∑

σ∈m[i]

pσ

⎞
⎠ e∏

i=1

|αi| . (3)

Let Ms denote a set of motifs that has only the solid characters

of at least s occurrences of m. For example, consider the motif a-

b with realizations a.b, a..b and a...b. Then M1 = {a.b, a..b, a...b}
since m occurs once on each m ∈ M1; M2 = {a.bb, a..bb, a.b.b}
since m occurs twice on each m ∈ M2; M3 = {a.bbb}
since m occurs three times on m ∈ M3. More precisely, Ms =

{mi | mi is the intersection of at least s realizations of m, mi /∈
Ms′ ∀1 ≤ s′ < s}.

Corollary 2: Let m be a degenerate (possibly with multiple

occurrences at a site) extensible motif, given r as the maximum

number of multiple motif occurrences starting at same site, and

let pmk =
∑

m′∈Mk pm′ , then

pm =

r−1∑
k=0

(−1)k (pmk+1) . (4)

This follows directly from the inclusion-exclusion principle.

Notice that for a degenerate motif, Expression (2) is the zeroth

order approximation of Expression (4). The first order approxi-

mation is pm ≈ pm1−pm2 and the second order approximation is

pm ≈ pm1−pm2+pm3 and so on. Using Bonferroni’s inequalities,

a kth order approximation of pm is an over-estimate of pm, if k

is odd. This is helpful in practice where we don’t need to know

the correct value of r.

Next, we obtain the form of pm for a non-degenerate motif

when input m is assumed to be generated by a Markov chain.

For the derivation below, we assume the Markov chain has order

1. For further discussion, we introduce the following definition.

Definition 1: (cell 〈σ1, σ2, �〉, C(m)) A substring m̂ on m is a

cell, if m̂ begins and ends in solid characters with only non-solid

intervening characters: σ1, at the start and σ2 at the end position

and � is the number of intervening un-annotated dot characters. If

the intervening character is the extensible character, then � takes

the value of -1. For convenience, the cell is represented by the

triplet 〈σ1, σ2, �〉. C(m) is the collection of all such cells of m.

For example, using the above notation, C(ab..c.d-g) =

{〈a, b, 0〉 , 〈b, c, 2〉 , 〈c, d, 1〉 , 〈d, g, -1〉}.

Let p
(k)
σ1,σ2 denote the probability of moving from σ1 to σ2

in k steps. Let s be a stationary, irreducible, aperiodic Markov

chain of order 1 with state space Σ (|Σ| < ∞). Further, πσ is the

equilibrium probability of σ ∈ Σ and the (|Σ| × |Σ|) transition

probability matrix P [i, j] is defined as p
(1)
σi,σj . For a rigid motif m,
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for each cell 〈σ1, σ2, �〉 ∈ C(m) is such that � ≥ 0. It is easy to

see that when � ≥ 0, the cell represents the (�+1)-step transition

probability given by P �+1, i.e., pσ1(.)�σ2
= P �[σ1, σ2]. Thus for

a rigid motif m we have that

pm = πm[1]

∏
〈σ1,σ2,�〉∈C(m)

P �[σ1, σ2] .

If m is an extensible motif on s then

pm =
∑

m∈R(m)

πm[1]

∏
〈σ1,σ2,�〉∈C(m)

P �[σ1, σ2] . (5)

In fact, using the definition of a realization yields

pm =
∑

m∈R(m)

(pm) .

Hence we need to compute pm where m is a rigid motif.

When sets of characters or homologous sets are used in motifs,

the cell is appropriately defined so that σ1 and σ2 are sets of

homologous characters, possibly singletons. Then the following

holds.

Lemma 2: If m is an extensible motif where each m[i] is a set

of characters (homologous characters), then

pm =
∑

m∈R(m)

∑
σ∈m[1]×...×m[|m|]

πσ[1]

|m|−1∏
i=1

(
P �i [σ[i], σ[i + 1]]

)

(6)

where 〈σ[i], σ[i + 1], �i〉 is a cell of the realization m.

When two motifs m1 and m2 both get a significant score (as

defined in Expression (8)), and are very close to each other, it

becomes desirable to discriminate one from the other. This calls

for a more careful evaluation of the score.

In the previous definitions, we used the assumption that a motif

is generated by a single stationary source. This model undergoes

the restriction that also a mismatch is produced by such source,

whereas in reality it is the concatenation of a series of events

that generate this mismatch. We can revisit our earlier model and

refine the treatment of the wild card under the i.i.d. assumption.

In Lemma 1, the dot character is treated as “any” character

emitted by the source and thus its probability is assigned to be 1.

However, in computing the probability of the leftmost occurrence

of a motif the dot character actually corresponds to a mismatch.

A mismatch occurs when in comparing two input sequences at

particular positions the two characters differ. We can express

this probability as the complement of having two independent

extractions from an urn return the same character, hence:

pdot = 1 −
∑
σ∈Σ

p2
σ ,

where σ ∈ Σ. Expression 2 can now be replaced by :

pm =
∏
σ∈Σ

(pσ)jσ

e∏
i=1

(|αi|pαi

dot
) . (7)

Using pdot < 1 instead of pdot = 1 could be interpreted as

a probabilistic way to include a ”gap penalty” in the previous

formulation. This new definition does not affect corollary [2].

Let now u and v be two motifs such that v can be obtained from

u by a sequence of consecutive unit expansions –consisting each

of adding a dot or a character or a character set, or replacing a dot

character with a solid character or character set– that transforms

u into v. In particular, any condensation v of u can be produced

in this way. A score z is monotonic for u and v if the value of z is

always either increasing or decreasing over any such expansion.

The key observation here is that, under most probabilistic settings,

the probability of a condensation v of u obeys pv ≤ pu. This is

almost immediate under i.i.d. distribution, as the following claim

shows.

Theorem 1: Let v and u be possibly degenerate extensible

motifs under the iid model and let v be a condensation of u.

Then, there is a real p̂ ≤ 1 such that pv = pup̂.

Proof. It is enough to consider the case of a unit condensation,

i.e., where v has one more solid character than u. The claim holds

trivially when the extra character is added at the beginning or at

the end of u. In fact, in any such case the probability of the

extra character multiplies each term of Expression 4, whence the

whole probability as well. Consider next the case where the solid

character in v substitutes a don’t care of u. We begin by describing

an alternate way to compute pu. With � denoting the length of a

longest string in R(u), compute the set of all strings over Σ� and

store them consecutively row-wise in a table. Compute, for each

row, the probability of the string in that row, which is the product

of the probabilities of the individual characters (the sum of all

row probabilities is 1). Consider now the realizations in R(u) in

succession. Check each realization against every row of the table;

wherever the two match, mark the row if it had not been already

marked. Let R be the set of rows that are marked at the outset.

Clearly, adding up the probabilities of the rows in R yields pu.

Consider now the set of rows that would be similarly involved

in the computation of pv . This must be a subset of R, whence

pv ≤ pu. �
With Markov processes, the intuition at the basis is that if we

split the transition probability into two consecutive segments then

we have: P �[σ1, σ2] =
∑

σk∈Σ P �1 [σ1, σk] × P �2 [σk, σ2], where

� = �1 + �2. Since all P �[σi, σj ] ≥ 0, then any specific character

(or alphabet subset) acting as a bottleneck yields P �[σ1, σ2] ≥
P �1 [σ1, σk] × P �2 [σk, σ2]. The following general property is

derived in analogy with a similar one in [2].

Theorem 2: If f(u) = f(v) > 0, N(v) < N(u), and

E(v)/N(v) ≤ E(u)/N(u), then

f(v) − E(v)

N(v)
>

f(u) − E(u)

N(u)
.

Proof. Multiplying both terms by N(v)/E(v) and using the

assumption f(v) = f(u) ≥ 0 we get, after rearrangement

f(u)

E(v)

(
1 − N(v)

N(u)

)
> 1 − E(u)N(v)

E(v)N(u)
.

Since 0 < N(v)/N(u) < 1, then the left hand side is always

positive. The right hand size is always negative or zero. �
When N(u) is the square root of the variance, the z-score takes

up the form

z(u) =
f(u) − E(u)√

Var(u)
.

In the Bernoulli model, for instance, this variance results in√
npu(1 − pu). In our case, we let pm be the probability of the

motif m occurring at any location i on the input string s with

n = |s| and let km be the observed number of times it occurs on

s. When it can be assumed that the occurrence of a motif m at a

site is an iid process, (cf. [19], Chapter 12), we have for large n
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and km � n,

km − npm√
npm(1 − pm)

→ N (0, 1) . (8)

Theorem 3: Let u and v be motifs generated with respective

probabilities pu and pv = pup̂ according to an iid process. If

f(u) = f(v) and pu < 1/2 then

f(v) − E(v)√
E(v)(1 − pv)

≥ f(u) − E(u)√
E(u)(1 − pu)

.

Proof. We show that the functions N(u) =
√

E(u)(1 − pu)

and E(u)/N(u) satisfy the conditions of Theorem 2. First, we

prove that E(v) ≤ E(u). Indeed, since (|v| − |u|)/(n − |u| + 1) ≥
0,

E(v)

E(u)
=

(n − |v| + 1)pv

(n − |u| + 1)pu
=

(
1 − |v| − |u|

n − |u| + 1

)
p̂ ≤ p̂ ≤ 1 .

Next, we study the ratio(
N(v)

N(u)

)2

=

(
1 − |v| − |u|

n − |u| + 1

)
pv(1 − pv)

pu(1 − pu)
≤ pv(1 − pv)

pu(1 − pu)
.

The concave product pu(1 − pu) reaches its maximum for pu =

1/2. Since we assume pu < 1/2, the rightmost term is smaller

than 1. The monotonicity of N(u) is satisfied.

Finally, we prove that also E(u)/N(u) is monotonic, i.e., that

E(v)/N(v) ≤ E(u)/N(u), which is equivalent to

E(v)

E(u)

1 − pu

1 − pv
≤ 1 .

But E(v)/E(u) ≤ 1 by hypothesis and (1 − pu)/(1 − pv) < 1

since pu > pv . �
In conclusion, we can restrict our z-score computation to

classes of maximal motifs, i.e., only compute the z-score for the

maximally saturated motif among those in each class of motifs

sharing the same list of occurrences.

The previous z-score is not the only way to measure events

that occur with unexpected frequency. In applications related to

classification and clustering, such as, e.g., with protein families,

a motif m is considered to be over-represented if a surprisingly

large number of sequences from an ensemble contain each at
least one occurrence of m. In this context, a large total number

of occurrences of m in any particular sequence is immaterial and

may be misleading as a measure, since the relevant fact is that

the motif is shared across multiple sequences.

Let pm be the probability assigned to motif m, computed

according to any of the models above. Assuming t sequences

s1, s2, ..., st to be given, the expected number of occurrences of

the motif in si is approximately μi = pm|si|. By the law of rare

events (Poisson distribution), the probability of finding m at least

once in si is p(i) = 1− e−μi . The expected number of sequences

containing m at least once is then

E =

t∑
i=1

p(i) = t −
t∑

i=1

e−μi .

We can assess the statistical significance of a given discrepancy

between observed and estimated by taking the χ-square ratio:

(Q − E)2

E

where Q corresponds to the counted quorum, i.e., the number

of sequences that contain m.

This setting does not alter the considerations on saturation

and monotonicity developed earlier: the intuition is that, quorum

being equal, a saturated motif will have a smaller probability and

therefore its degree of over-representation would only increase.

III. ALGORITHMIC IMPLEMENTATION

The algorithm implementing the above criteria works by it-

erated pairwise combination of segments of maximal extensible

motifs, followed by pruning of those pairings that are found to

be not maximal. The input is a string s of size n and two positive

integers, K and D. The extensibility parameter D is interpreted

in the sense that up to D (or 1 to D) number of dot characters

between two consecutive solid characters are allowed. The output

is all maximal extensible (with D spacers) motifs that occur at

least K times in s. Incidentally, the algorithm can be adapted

to extract rigid motifs as a special case. For this, it suffices to

interpret D as the maximum number of dot characters between

two consecutive solid characters.

The algorithm works by converting the input into a sequence

of possibly overlapping cells (see Definition 1). A maximal

extensible motif is a sequence of cells.

Initialization Phase
The cell is the smallest extensible component of a maximal pattern

and the motif can be viewed as a sequence of overlapping cells.

The initialization phase has the following steps.

Step 1: Construct patterns that have exactly two solid characters

in them and separated by no more than D spaces or “.” characters.

This is done by scanning the string s from left to right. Further,

for each location we store start and end position of the pattern.

For example, if s = abzdabyxd and K = 2, D = 2, then all

the patterns generated at this step are: ab, a.z, a..d, bz, b.d, b..a,

zd, z.a, z..b, da, d.b, d..y, a.y, a..x, by, b.x, b..d, yx, y.d, xd,

each with its occurrence list. Thus Lab = {(1, 2), (5, 6)}, La.z =

{(1, 3)} and so on.

Step 2: The extensible cells are constructed by combining all

the cells with at least one dot character and the same start and

end solid characters. The location list is updated to reflect the

start and end position of each occurrence. Continuing the previous

example, b–d is generated at this step with Lb−d = {(2, 4), (6, 9)}.

All cells m with |Lm| < K are discarded. In the example, the only

surviving cells are ab, b–d with Lab = {(1, 2), (5, 6)} and Lb−d =

{(2, 4), (6, 9)}
Iteration Phase

Let B be the collection of cells. Extract(B) is a routine that

returns the first element of B in alphabetic order. If m =

Extract(B), then m ∈ B and there does not exist m′ ∈ B such

that m′ � m holds: m1 � m2 if one of the following holds: (1)

m1 has only solid characters and m2 has at least one non-solid

character; (2) m2 has the “–” character and m1 does not; (3) m1

and m2 have d1, d2 > 0 dot characters respectively and d1 < d2.

Further, m1 is ∼-compatible with m2 if the last solid character

of m1 is the same as the first solid character of m2. Moreover

if m1 is ∼-compatible with m2, then m = m1 ∼ m2 is the con-

catenation of m1 and m2 with an overlap character, respectively

at the common end and start character and L′
m = {(x, y)|(x, l) ∈

L′
m1 , (l, y) ∈ L′

m2}. For example if m1 = ab and m2 = b.d then

m1 is ∼-compatible with m2 and m1 ∼ m2 = ab.d. However,

m2 is not ∼-compatible with m1.

Note that it is possible to have simultaneously m1 ∼-

compatible with m2 and m2 ∼-compatible with m1 hold simul-
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taneously and hence both conditions are checked in tandem. In

particular we first try to extend m1 to the right till the maximality

condition is preserved and then reiterate the process to the left.

For consistency the order of these two extensions must be always

the same.

The procedure is best described by the pseudocode shown here.

NonMaximal(m) is a routine that checks if the new motif m

is non-maximal w.r.t. motifs in Result by checking the location

lists; more precisely, the motif m is non-maximal if its location

list can be constructed by merging and/or shifting other location

lists of previously computed motifs. Steps G:18 and G:19 detect

the suffix motifs of already detected maximal motifs. Result is

the collection of all the maximal extensible motifs.

Main()

{
Result ← {};

B ← {mi|mi is a cell with at most D spaces};

For each m = Extract(B)

Iterate(m, B, Result);

}
Iterate(m, B, Result)

{
G:1 m′ ← m;

G:2 For each b = Extract(B) with

G:3 ((b ∼–compatible m′) OR (m′ ∼–compatible b))

G:4 If (m′ ∼–compatible b)

G:5 mt ← m′ ∼ b; compute Lmt ;

G:6 If NonMaximal(mt) continue;

G:7 If (|Lm′ | = |Lb|) B ← B − {b};

G:8 If (|Lm′ | ≥ K)

G:9 m′ ← mt;

G:10 Iterate(m′, B, Result);

G:11 If (b ∼–compatible m′)
G:12 mt ← b ∼ m′; compute Lmt ;

G:13 If NonMaximal(mt) continue;

G:14 If (|Lm′ | = |Lb|) B ← B − {b};

G:15 If (|Lm′ | ≥ K)

G:16 m′ ← mt;

G:17 Iterate(m′, B, Result);

G:18 For each r ∈ Result with Lr = Lm′

G:19 If (m′ is not maximal w.r.t. r) continue;

G:20 Result ← Result ∪ {m′};

}

Correctness follows from the observation that the above pro-

cedure essentially constructs the inexact suffix tree of [10] im-

plicitly, in a different order. A tight time complexity is more

difficult to come by, however, if we consider M to be the

number of extensible maximal motifs and S to be the size of

the output – i.e. the sum of the sizes of the motifs and the sizes

of the corresponding location lists – then the time taken by the

algorithm is O(SM log M). The intuition behind this upper-bound

is that maximal motifs are constructed incrementally by merging

incomplete maximal motifs. By construction, we do not need to

backtrack and the merging step can be performed efficiently using

a hash table that maintains the motifs in sorted ordered. This

results a log-rump construction that accounts for the M log M

term. In experiments of the kind described later in the paper, at

3 GHz clock, time ranged typically from few minutes to half an

hour.

A. Varun Implementation and Usage

In this section we give details related to the usage of Varun3,

the software suite implementing the discovery process described

in the previous section, expanded by suitable combinatorial and

statistical pruning.

Since the pattern space can vary dramatically for different

classes of inputs, a number of parameters have been introduced

to allow the user to best exploit his specific domain knowledge.

By fine tuning some parameters, the user can variously prune

the pattern space. There are essentially two classes of pruning

parameters: (1) combinatorial and (2) statistical. To avoid clutter,

we describe only a few of the critical pruning parameters here.

Each parameter has a default value and it is not mandatory to

specify them all.

Combinatorial pruning
1) Pruning by Occurrences:

a) -k<Num>: Num is the quorum or the minimum num-

ber of times a pattern must occur in the input.

b) -c: When this is specified the quorum k is in terms of

the number of sequences where the pattern occurs at

least once. For example if this option is set and further

-k10 is specified, then a valid pattern must occur in

at least 10 distinct sequences. However if this option

is not set then a valid pattern must have at least 10

occurrences, not necessarily in distinct sequences.

2) Pruning by composition:

a) Using groups of equivalent symbols:

i) -b<File>: File list of groups of symbols that

can be considered equivalent. The default file is an

empty file.

ii) n<Num>: Num is the maximum number of brack-

eted elements (equivalence classes) in a pat-

tern. For example, if “-n2” is specified, then

[IL]...[LV ], L.[LV ]-V are valid patterns but not

[LV ][IL][LV ]..L.

b) -R: When this mode is specified, only rigid patterns

are discovered.

c) Extensibility: The following two parameters are used

to prune the space of extensible patterns. Table I shows

an example of the size of the pattern space for different

parameter values.

i) -D<Num>: Num is the maximum number of con-

secutive don’t care characters (‘.’) in the realization

of an extensible pattern. Note that a don’t care

character and an extensible character are never

consecutive in any valid pattern. For example, if

“-D3” is specified, then L...V , LV , L.L.V are

valid patterns but not L....L. Further, an extensible

pattern of the form L-V implies that there are one

to three don’t care characters in the occurrences of

this pattern between the amino acids L and V .

ii) -d<Num>: Num is the minimum number of non-

extensible characters (including the don’t care

character) between two consecutive extensible

characters (‘-’). For example, if “-d4” is specified,

then L..H-L..H-L is a valid pattern but not L...H-

L.H-L.

3A character from Indian mythology who is thousand eyed and sees all that
happens in the world.
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TABLE I

NUMBERS OF PATTERNS IN THE EXPERIMENT IN FIGURE 5 WITH Z-SCORE

≥ 100.0 AT VARIOUS VALUES OF PARAMETERS D AND d WITH QUORUM

k = 53

D
2 3 4 5

3 121 196 370 1145
4 121 194 355 1008

d 5 114 182 326 891
8 112 178 313 758

10 112 178 313 727

Pattern Probability Occ. Z-Score
[LIVP]-[LM]R.[GE][LIVP].GC 2,05647e-07 57 585,494
LR.[GE][LIVP].GC 2,53136e-07 63 582,758
L..[GE][LIVP].GC 4,77614e-06 70 148,626
R-[GE][LIVP].GC 6,33367e-06 66 121,48
L-[GE][LIVP].GC 1,43284e-05 83 101,21
G[LIVP][GE].GC 3,98344e-05 77 55,359
R-[LIVP].GC 4,68467e-05 65 42,6968
L-[LIVP].GC 0,00010598 112 48,3873

Fig. 1. A statistical summary of a small set of valid patterns on the
Coagulation factors 5/8 type C domain, also used in Figure 5.

Statistical pruning

1) -p<File>: File lists the symbol probabilities used for

the probabilistic analysis.

2) -z<Val>: Val is the minimum absolute value of Z-score

of the patterns.

Information display

1) Displaying occurrence information: The different modes of

displaying the occurrence list of each valid pattern are as

follows. (1) The occurrence list is not displayed (option

-L0). (2) Only the start position of each occurrence is

displayed (option -L1). (3) The start and end position of

each occurrence is displayed as x1 − x2 where x1 is the

starting position and x2 the end position(option -L4).

2) Displaying statistical information: The different statistical

information displayed for possible use are (see Section II)

(1) the probability of occurrence of a pattern, (2) the ob-

served number of occurrences and (3) the Z-score. Figure 1

shows an example.

IV. TESTS AND EXPERIMENTS

We tested Varun on several protein families by seeking the

surprising motifs in each. Each family was picked at random

from the PROSITE database. Here we report four cases, more

families are included in the supplemental material.

1) Streptomyces subtilisin-type inhibitors (id PS00999). Bac-

teria of the Streptomyces family produce a family of

proteinase inhibitors characterized by their strong activity

toward subtilisin. They are collectively known as SSI’s:

Streptomyces Subtilisin Inhibitors. Varun discovers this

functionally significant motif as the top ranking one out

of 470 extensible motifs that satisfy the k, D, and d

requirements (Figure 2).

2) Nickel-dependent hydrogenases (id PS00508). These are

enzymes that catalyze the reversible activation of hydrogen

and is further involved in the binding of nickel. Again, this

functionally significant motif is detected in the top three by

Varun out of 4150 extensible motifs (Figure 3).

3) G-protein coupled receptors family 3 (id PS00980). Varun

finds that the most important structural motif in this family

is in the top thirty of the motifs out of 3508 extensible

motifs (Figure 4).

4) Coagulation factors 5/8 type C domain (FA58C) (id
PS01286). Varun places the most important structural and

functional motif in this family is in the top two of the motifs

out of 80290 extensible motifs (Figure 5).

Rank z-score Motif
1 7,60E+07 RA.T[LV].C.P-(2,3)G.HP....AC[ATD].L....[ASG]
2 21416,8 A..[LV].C.P-(2,3)G.HP-(1,2,4)[ASG].[ATD]
3 8105,33 A-(1,4)T....P-(2,3)G.HP....[ATD]-(3)L....[ASG]
4 5841,85 [ATD].T....P-(1,2,3)G.HP-(1,2,4)A.[ATD]
5 4707,62 P.[ASG]-(2,3,4)P....AC[ATD].L....[ASG]
6 4409,21 A..[LV]...P-(2,3)G.HP-(1,2,4)A.[ATD]
7 3086,17 P-(1,2,3)[ASG]..P-(4)AC[ATD].L....[ASG]
8 3068,18 R..[ATD]....P-(2,3)G.HP-(1,2,4)[ASG].[ATD]
9 2615,98 [ASG][ATD]-(1,3,4)P....AC[ATD].L....[ASG]

10 2569,66 [ASG]-(1,2,3,4)P....AC[ATD].L....[ASG]
11 2145,6 G-(2,3)P....AC[ATD].L....[ASG]

Fig. 2. The functionally relevant motif is shown in bold for Streptomyces
subtilisin-type inhibitors signature (id PS00999). Here 20 sequences of about
2500 amino acids were analyzed at k=20, D=4, d=4.

Rank z-score Motif
1 295840 [LIM]-(1,2,3,4)[STA][FY]DPC[LIM][ASG]C[ASG].H
2 286535 [LIM]-(1,2,3,4)[ASG][FY]DPC[LIM][ASG]C[ASG].H
3 155736 R-(1,4)[FY]DPC[LIM][ASG]C[ASG].H
4 78829 [LIM]-(1,2,3,4)[STA].DPC[LIM][ASG]C[ASG].H
5 76101,9 [LIM]-(1,2,3,4)[ASG].DPC[LIM][ASG]C[ASG].H
6 34205,6 [STA]-(1,4)DPC[LIM][ASG]C[ASG].H
7 30325,1 [LIM]-(1,2,3,4)[STA][FY]D.C[LIM][ASG]C..H
8 29276 [LIM]-(1,2,3,4)[ASG][FY]D.C[LIM][ASG]C..H
9 20527,3 [ASG]-(1,4)DPC[LIM][ASG]C[ASG].H

10 17503,4 [LIM]-(1,2,3,4)[ASG]..PC[LIM][ASG]C[ASG].H

Fig. 3. The functionally relevant motifs are shown in bold for Nickel-
dependent hydrogenases (id PS00508). Here 22 sequences of about 23000
amino acids were analyzed at k=22, D=4, d=3.

To summarize, we find that in almost all cases, the motif

documented as the most important (as functionally/structurally

relevant) motif in PROSITE is in the top extensible motifs

returned by Varun as surprising. In the third set (Figure 4) we

find the PROSITE motif at position 42. This experiment shows

that in some particular cases the patterns reported by Varun can

be grouped together, in fact the top scoring motifs are very close

to each other in location and composition. This suggests that a

post processing step that clusters together the top patterns could

improve the goodness of the results. In all cases, the difference in

the z-score between the top few and the rest is dramatic as can be

seen in Figures 2 through 5. The differing values of the Z-scores

of each family is attributed to the different sizes of the families

(the number of members and the length of each member). When

testing with unrelated sequences the distribution of z-scores shows

much smaller peaks compared to a family of proteins. To test if

the values of Z-scores presented in the figures are significant w.r.t.

to a set of random sequences, for each experiment we generate

a set of random sequences with exactly the same number of

sequences and the same lengths. Then we extract motifs using the

settings of the various experiments to further analyze the Z-scores

distribution. In all cases the Z-score ranges between 0 and 38 with
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Rank z-score Motif
1 2,84E+09 Y...L...C..[FYW]A..[STAH]R..P..FNE[STAH]K.I.F[STAH]M

2 8,28E+07 V-(1,3,4)G...S..[STAH]....N...L....Q-(4)[STAH]....L.[DN]...[FYW]..F....P....Q..A...I

3 5,55E+07 L-(2,3)F...Q....[STAH][STAH]...L.[DN]...[FYW]..F.R..P.D..Q..A...I

4 4,27E+07 L-(2,3)F...Q.[STAH]..[STAH][STAH]....S....[FYW]..F.R..P.D..Q..A...I

5 4,23E+07 L....I...[STAH]..[STAH]....LS[DN]...[FYW]..F.R..P.D..Q..A...I

6 3,99E+07 LF-(3)Q....[STAH][STAH]....S[DN]...[FYW]..F.R..P.D..Q..A...I

7 3,38E+07 LF-(3)Q....[STAH][STAH]...L.[DN]...[FYW]..F.R..P.D..Q..A...I

8 3,38E+07 LF...Q....[STAH]-(4)L.[DN]...[FYW]..F.R..P.D..Q[STAH].A...I

9 3,29E+07 I-(1)Q.[STAH]..[STAH]....LS[DN]...[FYW]..F.R..P.D..Q..A...I

10 3,29E+07 I.Q-(4)[STAH]....LS[DN]...[FYW]..F.R..P.D..Q[STAH].A...I

11 3,29E+07 I.Q.[STAH]..[STAH]-(4)LS[DN]...[FYW]..F.R..P.D..Q..A...I

12 3,10E+07 L....Q-(1,4)[STAH]..[STAH]....LS[DN]...[FYW]..F.R..P.D..Q..A...I

13 2,77E+07 L[FYW]-(3)Q.[STAH]..[STAH]....LS....[FYW]..F.R..P.D..Q..A...I

14 2,58E+07 L-(4)Q.[STAH]..[STAH]....LS[DN]...[FYW]..F.R..P.D..Q..A...I

15 2,30E+07 S.[STAH]S-(2,4)LS[DN]...[FYW]..F.R..P.D..Q[STAH].A...I

16 2,15E+07 L-(1,3,4)C..[FYW]A..[STAH]R..P..F.E.K.I.F.M

17 1,40E+07 F-(1)I.Q...[STAH][STAH]-(4)L[STAH]....[FYW]..F.R..P.D..Q..A...I

18 1,37E+07 L-(2,4)I...[STAH].[STAH].[STAH]-(3)LS....[FYW]..F.R..P.D..Q..A...I

19 1,02E+07 L..I-(1)Q....[STAH][STAH]....S....[FYW]..F.R..P.D..Q..A...I

20 8,65E+06 I-(1)Q....[STAH][STAH]...L.[DN]...[FYW]..F.R..P.D..Q..A...I

21 8,19E+06 S[STAH]-(1,2,3,4)LS[DN]...[FYW]..F.R..P.D..Q[STAH].A...I

22 7,98E+06 Q-(3)[STAH][STAH]....LS[DN]...[FYW]..F.R..P.D..Q..A...I

23 6,82E+06 F-(3)Q....[STAH][STAH]...L[STAH]....[FYW]..F.R..P.D..Q..A...I

24 5,66E+06 A[STAH][STAH]-(2,3)LS[DN]...[FYW]..F.R..P.D..Q..A...I

25 5,57E+06 F.I-(3)[STAH]..[STAH]....L[STAH]....[FYW]..F.R..P.D..Q..A...I

26 5,18E+06 L.L-(4)Q....[STAH]....L-(1)[DN]...[FYW]..F.R..P.D..Q..A...I

27 3,61E+06 L.L-(2)I...[STAH]...[STAH]....[STAH]....[FYW]..F.R..P.D..Q..A...I

28 3,48E+06 [STAH].[STAH]-(1,2,3)LS[DN]...[FYW]..F.R..P.D..Q..A...I

29 3,17E+06 [STAH]...[STAH]...LS[DN]...[FYW]..F.R..P.D..Q..A...I

30 2,47E+06 L....Q-(4)[STAH][STAH]....S....[FYW]..F.R..P.D..Q..A...I

31 2,43E+06 V-(1,3)N.L....I-(3)[STAH]...[STAH]....[STAH]....[FYW]..F....P.D..Q..A...I

32 2,22E+06 [STAH][STAH][STAH]-(1,2,3)LS....[FYW]..F.R..P.D..Q..A...I

33 2,06E+06 [STAH].[STAH][STAH]....LS....[FYW]..F.R..P.D..Q..A...I

34 2,03E+06 Y...L...C...A...R..P..F.E.K.I-(1,4)[FYW][STAH]

35 1,99E+06 I.Q...[STAH]-(1)[STAH]...L.[DN]...[FYW]..F....P.D..Q..A...I

36 1,99E+06 I.Q-(1)[STAH]...[STAH]...L.[DN]...[FYW]..F....P.D..Q..A...I

38 1,97E+06 F.I...[STAH]-(3)[STAH]...L.[DN]...[FYW]..F....P.D..Q..A...I

40 1,97E+06 F.I-(3)[STAH]..[STAH]....L.[DN]...[FYW]..F....P.D..Q..A...I

41 1,91E+06 [STAH]..[STAH].K-(1,4)P..FNE[STAH]K.I.F[STAH]M

42 1,72E+06 CC[FYW].C..C....[FYW]-(2,4)[DN]..[STAH]C..C
43 1,57E+06 [STAH]-(1,3,4)[FYW]A..[STAH]R..P..F.E.K.I.F.M

44 1,49E+06 A-(1,3)[STAH]...L[STAH][DN]...[FYW]..F.R..P.D..Q..A...I

45 1,36E+06 Q...[STAH].[STAH]-(3)L[STAH]....[FYW]..F.R..P.D..Q..A...I

46 1,32E+06 I-(3)[STAH]..[STAH][STAH]....S....[FYW]..F.R..P.D..Q..A...I

47 1,31E+06 [STAH][STAH]-(1,2,3,4)L.[DN]...[FYW]..F.R..P.D..Q..A...I

48 1,24E+06 [STAH]..[STAH][STAH]-(1,3)LS....[FYW]..F.R..P.D..Q..A...I

49 1,19E+06 [FYW]-(1,3,4)[STAH]...P..FNE[STAH]K.I.F[STAH]M

50 1,12E+06 I...[STAH]-(3)[STAH]...L[STAH]....[FYW]..F.R..P.D..Q..A...I

Fig. 4. The functionally relevant motif is shown in bold for G-protein coupled
receptors family 3 (id PS00980). This run involved 25 sequences of about
25000 amino acids each at k=25, D=4, d=8.

Rank z-score Motif
1 969,563 P-(4,5,8,9,10)[LM]R.[GE][LIVP].GC
2 694,1 P-(4,5,8,9,10)[LM]R.[GE][LIVP].[GE]C
3 370,594 [LIVP]-(1,3,4,5,6,7,8,9,10)[LM]R.[GE]..[GE]C
4 361,052 P-(4,5,8,9,10)[LM]R.[GE]..[GE]C
5 261,519 [LIVP]-(1,3,4,5,6,7,8,9,10)[LM]R.[GE][LIVP]..C
6 261,519 [LIVP]-(1,3,4,5,6,7,8,9,10)[LM]R..[LIVP].[GE]C
7 254,971 P-(4,5,8,9,10)[LM]R.[GE][LIVP]..C
8 254,971 P-(4,5,8,9,10)[LM]R..[LIVP].[GE]C
9 249,763 [LIVP]........[LIVP]-(1,2,4,5,6,7,8,9,10)R.[GE]..GC

Fig. 5. The functionally relevant motif is shown in bold for Coagulation
factors 5/8 type C domain (id PS01286). Here 40 sequences of about 80290
amino acids were analyzed. Notice that in this case, the motifs have a fairly
large gap size of 10 amino acids at k=40, D=10, d=10.

a strong bias toward values smaller than 10. Clearly no signal was

present in the data, thus motifs with a Z-score in this range can be

discarded. Similar experiments can be conducted to find the best

setting for each set of sequences. In general we choose k to be

the total number of sequences, since we are looking for a signal

that is shared by all sequences. The don’t care parameters D and

d are obtained after experimenting with the data. In most cases

different combinations of D and d can discover the functional

motif or a more specific version of it. A similar behavior is also

observed with rigid motifs (see next).

Next, we test the sensitivity and selectivity of Varun using

the families as reported in PROSITE. Since most of the family

sizes are small, we do these experiments along the lines in [18]

page 46. The following six sets were selected, randomly in each

family: 5 sequences in each of the families, High potential iron-

sulfur proteins, Streptomyces subtilisin-type inhibitors, Nickel-

dependent hydrogenases, G-protein coupled receptors family 3

and Coagulation factors 5/8 type C domain, and 8 sequences from

the family of Chitin-binding type-1 domain. First, each family was

contaminated with one of the sets that was drawn from a different

family (for example the five sequences of G-protein was mixed

with the family of the hydrogenases). Next we contaminated each

family with two sets from a different family and then subsequently

with three sets. In each of the experiments we found that the top

ranked motifs were exactly as reported in Figures 2 to 5.

Furthermore we compared the motifs extracted by Varun with

those obtained by MEME [6]. MEME is an enumerative approach

that uses expectation maximization to extract patterns that are

over-represented with respect to an expected frequency. For each

family we consider the top 5 motifs obtained with MEME and

among these 5 motifs we choose the one that overlaps the most

with the region of the functionally relevant motif for that family.

Figure 6 displays a summary of the findings, along with the

number of sequences covered by the motifs. In most cases MEME

was not able to detect the correct motif or a portion of it. Only in

one case MEME discovered a motif similar to the one discovered

by Varun, but with a smaller coverage.

Protein Family and Motifs Coverage
Streptomyces Subtilisin-type Inhibitors Signature
RA.T[LV].C.P-(2,3)G.HP....AC[ATD].L....[ASG] 20/20

RAVTL[TSN]CAP[TG][AP]SGTHPA[AP]A[AS]ACAELR 15/20
Nickel-dependent Hydrogenases

[LIM]-(1,2,3,4)[STA][FY]DPC[LIM][ASG]C[ASG].H 22/22
– 0/22

G-protein coupled receptors
CC[FYW].C..C....[FYW]-(2,4)[DN]..[STAH]C..C 25/25

– 0/25
Coagulation factors

P-(4,5,8,9,10)[LM]R.[GE][LIVP].GC 40/40
– 0/40

Fig. 6. Comparison of the best motifs discovered by Varun (in bold) and by
MEME.

Markov Model. The experiments in this set were carried out

assuming that the input sequence is generated by a first-order

Markov process. The transition and stationary probabilities of the

model are estimated from the union of all sequences under study.

Under the Markov model, the probability p(m) of a motif is

smaller than the one computed assuming an iid source. However,

the relative rankings of the motifs is more or less unchanged in

the two models. Consistently, the functionally relevant motifs still

appear in the first position (see Figure 7). Due to space constraints

we report only a small selection of experiments, some more are

included in the supplemental material.

Rank z-score Motif
1 3,93205e+07 RA.T[LV].C.P-(2,3)G.HP....AC[ATD].L....[ASG]
2 3416,13 A..[LV].C.P-(2,3)G..P-(1,2,4)A.[ATD]
3 1937,72 P-(1,2,3)[ASG]..P-(2,3,4)AC[ATD].L....[ASG]
4 429,241 A-(1,4)T[LV].C.P-(1,2,3)G
5 381,427 R..T....P-(2,3)[ASG]..P-(1,2,4)[ASG].[ATD]
6 356,925 P-(1,2,3)[ASG]..P....[ATD].[ATD].[LV]-(1,2,3,4)G
7 336,666 P.[ASG]-(2,3,4)P....[ATD].[ATD].L....[ASG]
8 303,414 P.[ASG]-(2,3,4)P....[ASG].[ATD].L....[ASG]
9 303,199 R[ASG].[ATD][LV].C-(1,3)P

Fig. 7. (MARKOV) The functionally relevant motif is shown in bold
for Streptomyces subtilisin-type inhibitors signature (id PS00999). Here 20
sequences of about 2500 amino acids were analyzed at k=20, D=4, d=4.

Rigid motifs. By an appropriate setting of parameters, Varun

will extract rigid motifs. We report here two examples from the

same data set and under iid assumptions. Figure 8 shows how

Varun can capture the rigid parts of target motif. In particular, the
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program extracts correctly the two rigid parts of the Streptomyces

subtilisin-type inhibitor motifs. Similar results can be found in the

supplemental material.

Rank z-score Motif
1 15198,2 G.HP....AC[ATD].L....[ASG]
2 1864,51 RA.T[LV].C.P
3 188,305 G..P....A...L....[ASG]
4 150,247 R[ASG].[ATD][LV].C
5 131,917 F[ASG]N.C
6 128,104 [ASG]..P....A...L....[ASG]
7 118,452 [ATD].T..C.P
8 79,2423 R[ATD].[ATD]..C
9 70,1957 R..T....P...[ASG]

10 67,2725 R[ASG]..[LV].C
11 64,7149 P....A...L....[ASG]
12 59,1431 A.[ATD][LV].C

Fig. 8. Rigid motifs for Streptomyces subtilisin-type inhibitors signature (id
PS00999). Here 20 sequences of about 2500 amino acids were analyzed at
k=20, D=4, d=4.

Experiments with DNA. We also tested the performance of

Varun on DNA sequences, namely, on the upstream regions of co-

regulated genes. SCPD [20] is a database of different transcription

factors for Yeast. For each transcription factor, the published motif

pattern, the positions of the binding sites and the set of sequences

containing these binding sites are recorded.

We tested the ability of Varun, MEME [6] and Projection [9] in

discovering the published motif for each data set. For MEME we

choose the motif that overlap the most with the solution among

the top 5 motifs reported. Since Projection required the motif

length l and Hamming distance d as input parameters, we set l

to be the length of the published motif and tested all values of d

from 0 to l. That algorithm is said to discover a published motif

if it outputs it for some d. On the other hand, Varun does not

require to know the length of the motif in advance, and the only

parameter that needs to be set is D, that in the examples reported

is particularly small, namely, 0 ≤ D ≤ 2.

Figure 9 shows the results of these experiments. Even though

we did not input the lengths of all of them, Varun could dis-

cover all the published motifs. Moreover in some cases (GAL4,

ROX1 and UASGABA) Varun could discover the correct motifs

while Projection could not. Similar considerations are valid also

for MEME that was not able to find two motifs. Figures 10-

12 present a detailed summary of the experiments reported in

Figure 9. In almost all cases the published motif is recovered

Rank z-score Motif
1 75,9558 CGG.G..CT.T.G..CG
2 47,351 A..AA.A..AA.A.TT
3 47,302 AA.A..AT.A..AAA
4 38,0177 C..A..A..AA..T.A.A.A
5 38,0177 CA.A..A..A..A..A.A.A
6 38,0177 T..C..TTT.T..T..T..T
7 37,978 G.A..G..G.T..TT..TC
8 37,9385 TTT..GG..A..A..A.G
9 37,899 A..A..AA.AT..TA.A

10 37,899 GG..G..T.T..TCC.T
11 37,8597 A..A..AG.AA.A.TT
12 37,8597 AA..TTT.C..TT..T
13 37,7815 C.T.ATAA..A.AA
14 37,7815 CT..TC..CCG..CG
15 32,9745 A..A..AT.A..AAA
16 32,906 A..AT.A..AAAA

Fig. 10. Motifs extracted from DNA sequences of the transcriptional factor:
GAL4. Parameters used: D=2, k=4.

Rank z-score Motif
1 391,67 TTTTTTTTT
2 261,94 TCCTTTTTTTTT
3 244,46 TTTTTTTT
4 196,25 CCTTTTTTTTT
5 150,43 TTTTTTT
6 130,83 CCATTGTTCTC
7 99,19 TTTTTT
8 98,00 TTTTTTTTTC
9 81,55 TTTTTTTTC

10 65,32 ATTGTTCTCG
11 65,32 TTTTTTTTCC
12 62,04 TTTTT
13 48,90 CCATTGTTC
14 48,90 ATTGTTCTC

Fig. 11. Motifs extracted from DNA sequences of the transcriptional factor:
ROX1. Parameter used: D=0, k=2.

Rank z-score Motif
1 8469,49 G.CAAAA.CCGC.GGCGG.A.T
2 1056,48 A.CGC.GCTT.G.AC.G.AA
3 528,79 GG.A.TC.T.T.G.TA.T.GC
4 527,143 TT.GA.ATG.TTT.T.TC
5 263,566 GT.CG.T.AT.G.ATA.G
6 263,293 TT.TC.T.C.CC.AAAA
7 263,293 GAT.ATA.AA.A.AG.A
8 263,293 CA.A.TA.TCA.TT.CT
9 263,293 T.TA.G.T.TTT.CTTC

10 263,022 T.ATA.T.TATTAT.A
11 131,499 ATA.A.AA.AG.A.AA
12 131,499 T.TTT.CTT.T.CC.A
13 131,364 G.TGT.AT.AT.TAA
14 131,229 C.T.AATAA.AAAT
15 131,229 TAT.G.TAATC.CT

Fig. 12. Motifs extracted from DNA sequences of the transcriptional factor:
UASGABA. Parameters used: D=1, k=2.

correctly, typically with a more specific version, and it appears

in one of the top positions. Only in Figure 11 a number of non

significant motifs appear in the top few positions. This is due

to the sequences involved, particularly rich of runs of Ts. Such a

situation is easy to recognize and filter out. As for the experiments

on protein data the z-score appears as a good indicator for the

quality of the motifs extracted.

V. CONCLUSION & FUTURE DIRECTIONS

The case studies reported in Section IV support the view that

allowing extensibility in a motif not only leads to a succinct

description but also helps in capturing function and/or structure

in a single pattern. On the other hand, with extensible motifs the

number of candidates to be considered increases dramatically.

By rigidly conjugating structure and set of occurrences, our

characterization of an extensible motif pattern lends itself to a

natural notion of maximality. Such a notion supports in turn

a discovery process in which motifs that are unlikely to be

surprising can be discarded before their score is computed. The

viability of the method has been tested successfully on families

of proteins and DNA sequences. More advanced probabilistic

frameworks seem worthy of investigation.
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